Generic filters
Exact matches only
FS Logoi

Luftqualität: Feinstaub gefährlicher als gedacht

Forschende des Paul Scherrer Instituts PSI haben erstmals die fotochemischen Vorgänge im Innern kleinster Partikel in der Luft beobachtet. Dabei entdeckten sie, dass sich in diesen Aerosolen unter alltäglichen Bedingungen zusätzliche Sauerstoffradikale bilden, die der menschlichen Gesundheit schaden können.

von | 29.03.21

In der Luft bilden sich weitere Radikale, die gesundheitsschädlich sind.

Forschende des Paul Scherrer Instituts PSI haben erstmals die fotochemischen Vorgänge im Innern kleinster Partikel in der Luft beobachtet. Dabei entdeckten sie, dass sich in diesen Aerosolen unter alltäglichen Bedingungen zusätzliche Sauerstoffradikale bilden, die der menschlichen Gesundheit schaden können.

Menschliche Aktivitäten vervielfachen die Mengen Feinstaub in der Luft

Dass Feinstaub die Gesundheit gefährden kann, ist bekannt. Die Partikel mit einem maximalen Durchmesser von 10 Mikrometern können tief ins Lungengewebe vordringen und sich dort festsetzen. Sie enthalten reaktive Sauerstoffverbindungen (ROS), auch “Sauerstoffradikale” genannt, die die Zellen der Lunge schädigen können. Je mehr Partikel in der Luft schweben, desto höher das Risiko. Die Partikel gelangen zwar auch aus natürlichen Quellen wie Wäldern oder Vulkanen in die Luft. Doch menschliche Aktivitäten, beispielsweise in Fabriken und Verkehr, vervielfachen die Menge, sodass bedenkliche Konzentrationen erreicht werden. Das Potenzial des Feinstaubs, Sauerstoffradikale in die Lunge zu bringen oder dort zu erzeugen, ist für verschiedene Quellen bereits untersucht worden. Die PSI-Forschenden haben dazu nun wichtige neue Erkenntnisse gewonnen.

Feinstaub verursacht oxidativen Stress im Körper

Die bisherige Forschung hat gezeigt, dass einige ROS im Körper des Menschen entstehen, wenn der Feinstaub sich in der Oberflächenflüssigkeit der Atemwege auflöst. Feinstaub enthält in der Regel chemische Bestandteile, etwa Metalle wie Kupfer und Eisen sowie bestimmte organische Verbindungen. Diese tauschen mit anderen Molekülen Sauerstoffatome aus und es entstehen sehr reaktionsfreudige Verbindungen wie Wasserstoffperoxid (H2O2), Hydroxyl (HO) oder Hydroperoxyl (HO2), die sogenannten oxidativen Stress verursachen. So greifen sie zum Beispiel die ungesättigten Fettsäuren im Körper an, die dann nicht mehr als Bausteine der Zellen dienen können. Auf solche Vorgänge führen Mediziner Lungenentzündungen, Asthma und diverse andere Atemwegserkrankungen zurück. Selbst Krebs könnte ausgelöst werden, da die ROS auch die Erbsubstanz DNA schädigen können.

Neue Erkenntnisse dank einmaliger Gerätekombination

Seit einiger Zeit ist bekannt, dass gewisse ROS-Spezies auch bereits im Feinstaub der Atmosphäre vorliegen und als sogenannte exogene ROS über die Atemluft in unseren Körper gelangen, ohne dass sie sich dort erst bilden müssen. Wie sich nun herausstellt, hat man dabei noch nicht genau genug hingesehen:  «Bisherige Studien haben mit Massenspektometern analysiert, woraus Feinstaub besteht», erklärt Peter Aaron Alpert, Erstautor der neuen PSI-Studie. “Dabei erhält man aber keine Informationen über die Struktur der einzelnen Partikel und darüber, was in ihrem Inneren vorgeht.”

Mit Röntgenlicht die Partikel im Feinstaub betrachten

Alpert dagegen nutzte die Möglichkeiten des PSI für einen präziseren Blick: “Mit dem brillanten Röntgenlicht der Synchrotron Lichtquelle Schweiz SLS konnten wir solche Partikel nicht nur einzeln mit einer Auflösung von unter einem Mikrometer betrachten, sondern sogar in sie hineinschauen, während Reaktionen darin ablaufen.” Dazu verwendete er auch eine neuartige, am PSI entwickelte Zelle, in der sich verschiedenste atmosphärische Umweltbedingungen simulieren lassen. Sie kann Temperatur, Feuchte sowie Gasexposition genau regulieren und eine UV-LED-Lichtquelle ahmt die Sonneneinstrahlung nach. «Diese Kombination – hochauflösendes Röntgenmikroskop und Zelle – gibt es nur einmal auf der Welt», sagt Alpert. Die Studie sei deshalb nur am PSI möglich gewesen. Eng zusammengearbeitet hat er dafür mit dem Leiter der Gruppe Oberflächenchemie am PSI, Markus Ammann. Unterstützt haben ihn ausserdem Forschende um die Atmosphärenchemiker Ulrich Krieger und Thomas Peter an der ETH Zürich, wo zusätzliche Experimente mit in der Schwebe gehaltenen Partikeln gemacht wurden, sowie Experten um Hartmut Hermann vom Leibniz-Institut für Troposphärenforschung in Leipzig.

Wie sich gefährliche Verbindungen bilden

Die Forschenden untersuchten Partikel mit organischen Bestandteilen und Eisen. Das Eisen stammt aus natürlichen Quellen wie Wüstenstaub oder Vulkanasche, ist aber auch in Emissionen von Industrie und Verkehr enthalten. Die organischen Bestandteile resultieren ebenfalls aus natürlichen und menschgemachten Quellen. In der Atmosphäre verbinden sich diese Bestandteile zu Eisenkomplexen, die dann unter Sonneneinstrahlung zu sogenannten Radikalen reagieren. Diese wiederum binden allen verfügbaren Sauerstoff und produzieren so die ROS.
Normalerweise würde ein grösserer Teil dieser ROS in der Wärme der Sonne aus den Partikeln in die Luft diffundieren und keine Gefahr mehr bedeuten, wenn wir die Partikel einatmen, die dann weniger ROS enthalten. Stimmen die Bedingungen, reichern sich die Radikale jedoch im Inneren der Partikel an und verbrauchen dort binnen Sekunden den gesamten verfügbaren Sauerstoff. Und das liegt an der sogenannten Viskosität: Feinstaub kann fest wie Stein oder flüssig wie Wasser sein – aber je nach Temperatur und Feuchte auch zähflüssig wie Sirup, Kaugummi oder Schweizer Kräuterzucker. “Dieser Zustand des Partikels, so haben wir festgestellt, sorgt dafür, dass die ROS im Partikel gefangenbleiben”, sagt Alpert. Und von aussen gelangt auch kein zusätzlicher Sauerstoff hinein.

Reaktive Sauerstoffverbindungen bilden sich bei alltäglichen Wetterbedingungen

Besonders erschreckend ist, dass sich durch das Zusammenspiel von Eisen und organischen Verbindungen die höchsten Konzentrationen der ROS bei alltäglichen Wetterbedingungen bilden: bei mittlerer Luftfeuchte von 50 Prozent und Temperaturen um die 20 Grad, wie sie etwa in Räumen herrschen. “Früher dachte man, dass ROS in der Luft – wenn überhaupt – nur dann entstehen, wenn die Feinstaubteilchen vergleichsweise seltene Verbindungen wie Chinone enthalten”, sagt Alpert. Das sind oxidierte Phenole, die etwa in Farbstoffen von Pflanzen und Pilzen vorkommen. Seit Kurzem ist klar, dass viele weitere ROS-Quellen im Feinstaub vorhanden sind. “Wie wir nun feststellten, können diese bekannten ROS-Quellen unter völlig alltäglichen Bedingungen deutlich verstärkt werden.” Etwa jedes zwanzigste Partikel ist organisch und enthält Eisen.

Weitere Vermutungen über Radikale in der Luft

Doch damit nicht genug: «Wir gehen davon aus, dass die gleichen fotochemischen Reaktionen auch in anderen Feinstaubpartikeln ablaufen», sagt Forschungsgruppenleiter Markus Ammann. «Wir vermuten sogar, dass nahezu alle Schwebeteilchen in der Luft auf diese Weise zusätzliche Radikale ausbilden», ergänzt Alpert. «Wenn sich dies in weiteren Studien bestätigt, müssen wir dringend unsere Modelle und Grenzwerte bezüglich der Luftqualität anpassen. Womöglich haben wir hier einen zusätzlichen Faktor dafür gefunden, dass so viele Menschen scheinbar ohne konkreten Anlass an Atemwegserkrankungen oder Krebs erkranken.»

Immerhin haben die ROS – zumal in Zeiten der COVID-19-Pandemie – auch ihr Gutes, wie die Studie ebenfalls nahelegt: Sie greifen auch Bakterien, Viren und andere Pathogene an, die auf den Aerosolen sitzen, und machen diese unschädlich. Dieser Zusammenhang könnte erklären, warum das Sars-CoV-2-Virus in der Luft bei Raumtemperatur und mittlerer Feuchte am kürzesten überlebt.

Das ganze Paper können Sie hier lesen.

Jetzt Newsletter abonnieren

Immer auf dem aktuellen Stand, alle 2 Wochen in Ihrem Postfach.

Hier anmelden

Geopolymere: Eisen aus Bergbauschlamm gewinnen
Geopolymere: Eisen aus Bergbauschlamm gewinnen

Aus Bergbauschlamm am Roten Graben gewinnen Forschende der TU Bergakademie Freiberg Wertmetalle wie Eisen und Zink. Die Reste verarbeiten sie zu einem Baustoff basierend auf der Geopolymertechnologie. Aus schadstoffhaltigem Wasser machen sie auf diese Weise reines Wasser, das in die Freiberger Mulde entlassen werden kann.

mehr lesen
FILTREX 2025: Filtration Conference & Exhibition in Vienna
FILTREX 2025: Filtration Conference & Exhibition in Vienna

EDANA, the global association serving the nonwovens and related industries, is pleased to announce the upcoming FILTREX 2025 conference and tabletop exhibition. This premier event for filtration professionals will take place on 25-26 March 2025 at the Hilton Waterfront Hotel in Vienna, Austria.

mehr lesen
IFAT Munich: Neue Laufzeit ab 2026
IFAT Munich: Neue Laufzeit ab 2026

Nach umfangreichen Auswertungen sowie in enger Abstimmung mit Unternehmen und Verbänden hat die Messe München beschlossen, die Laufzeit von fünf auf vier Tage zu verkürzen.

mehr lesen
Mikroplastik im Straßenabfluss: Projekt in Dänemark gestartet
Mikroplastik im Straßenabfluss: Projekt in Dänemark gestartet

Im Stadtteil Frederiksberg wird der CAPTURION-Filter von GKD erstmals in einer europäischen Hauptstadt eingesetzt, um Reifenabrieb und andere Feststoffe direkt in den Straßengullys herauszufiltern. Die Initiative des dänischen Startups BAIONYX wird in Zusammenarbeit mit der TU Berlin und dem URBANFILTER Sustainability Hub wissenschaftlich validiert und begleitet und von der Audi Stiftung für Umwelt gefördert.

mehr lesen

Sie möchten die F&S Filtrieren und Separieren testen?

Bestellen Sie Ihr kostenloses Probeheft

Überzeugen Sie sich selbst: Gerne senden wir Ihnen die F&S kostenlos und unverbindlich zur Probe!

Finance Illustration 03